
Journal of Statistical Planning and
Inference 136 (2006) 2129–2143

www.elsevier.com/locate/jspi

Some empirical Bayes rules for selecting the best
population with multiple criteria

Wen-Tao Huanga,∗, Yi-Ping Changb

aDepartment of Management Sciences and Decision Making, Tamkang University, Tamsui, Taiwan, ROC
bDepartment of Business Mathematics, Soochow University, Taipei, Taiwan, ROC

Available online 6 September 2005

Abstract

Consider k (k�2) normal populations whose mean �i and variance �2
i

are all unknown. Let �i be some

function of �i and �2
i

and �i is the parameter of main interest. For given control values �0 and �2
0, we want

to select some population whose associated value of �i the largest and also it is larger than �0 and whose
associated variance is less than or equal to �2

0. An empirical Bayes selection rule is proposed which has

been shown to be asymptotically optimal with convergence rate of order O((ln N)2/N), where N is the
minimum number of past observations at hand in each population. A simulation study is also carried out for
the performance of the proposed empirical Bayes selection rule, and it is found satisfactory.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let �1, . . . , �k be k (k�2) normal populations where observations Xij from �i are indepen-
dently distributed as N(�i , �2

i ) (j = 1, . . . , Mi, i = 1, . . . , k). All the means �i and variances
�2

i are unknown. When �i is the parameter of main interest, the problem of selecting the best
population was studied in papers pioneered by Bechhofer (1954) using the indifference zone ap-
proach and by Gupta (1956, 1965) employing the subset selection approach. A discussion of these
approaches and various related topics are referred to Gupta and Panchapakesan (1979) among
others.
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Let �i be some function of �i and �2
i . Consider a selection criterion which is defined in terms of

�i . The population which is associated with the largest (or the smallest depending on a statistician’s
goal) �i is called the best. For our convenience, here we call the parameter �i the parameter of
selection criterion. We are interested in selecting the best population. In most known results in the
theory of ranking and selection, parameter of selection criteria are commonly focused on either
�i or �2

i . However, in many practical situations, the pth quantile of a population, for example, is
an important statistical quantity to be considered. Also, the quantity of signal-to-noise ratio is an
important indication for some characteristic in practical application, particularly, in the area of
industrial statistics for example.

On the other hand, most literature are concerned with one criterion. In many situations, it
may not satisfy the experimenter’s demand. For example, in industrial statistics, one needs not
only to attain its largest target, but also one needs to keep the variation of quality of product
under control. Under this circumstance, a single criterion for selecting potential product does not
meet our requirement. Gupta et al. (1994) considered selecting the population associated with the
largest mean which is larger than a control. It involves two criteria for selection, however, they
belong to same character and only the location parameter is concerned. For this reason, Huang
et al. (1998), and Huang and Lai (1999) considered selecting the population associated with the
largest mean under constraint of both mean and variance. In this paper, we are concerned with
the problem of selecting the population associated with the largest parameter of �i under some
constraints.

In Section 2, we formulate the problem and develop the Bayes framework. In Section 3, we
propose an empirical Bayes selection rule and in Section 4, we study the large sample behavior
of the proposed rule. It is shown that the proposed empirical Bayes selection rule has a rate of
convergence of order O((ln N)2/N), where N is the minimum number of past observations at
hand in each population.

2. Formulation of problem and a Bayes selection rule

Suppose there are k (k�2) normal populations whose mean �i and variance �2
i are all unknown.

We are interested in identifying some population which is associated with the largest quantity �i ,
some function of �i and �2

i , and whose variance should not be large. In this paper, we consider the
quantity �i to be a linear function of �i , i.e. �i = g1(�2

i )�i + g2(�2
i ) such that (�i , �2

i ) → (�i , �
2
i )

is a one-to-one and onto mapping, where g1 and g2 are some functions of �2
i . So, domain of g1

or g2 is (0, ∞). For example, if g1(�2
i ) = 1 and g2(�2

i ) = �−1(p)�i , where �−1(·) is the inverse
of the standard normal distribution function, then �i = �i + �−1(p)�i is the pth quantile of the
population �i . If g1(�2

i ) = 1/�i and g2(�2
i ) = 0, then �i = �i/�i is the signal-to-noise ratio (or

standardized mean) of the population �i . Let �0 and �2
0 be two control values (prefixed) and we

are desired to identify the population corresponding to the largest quantity �i such that �i is no
less than �0 and its associated variance should be no larger than �2

0. For exact formulation, we
introduce the following definition which is mainly due to Huang and Lai (1999).

Definition 2.1. Defined S = {�i |�2
i ��2

0}. A population �i is called �-qualified, if �i ∈ S. A
population �i is considered as the best �-qualified, if it simultaneously satisfies the following
conditions:

(a) �i ∈ S,
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(b) �i > �0,
(c) �i = max�j ∈S �j .

Remark 2.1. Suppose �i = g1(�2
i )�i + g2(�2

i ) for some monotone functions of g1(·) and g2(·).
If we take g1 = 1 and g2 = 0, then the criteria given by Definition 2.1 become exactly the same
criteria considered in Huang and Lai (1999).

Let �=(�1, . . . , �k), �=(�1, . . . , �k), �=(�1, . . . , �k), and � be the parameter space of �. Let
a = (a0, a1, . . . , ak) be an action, where ai = 0, 1; i = 0, 1, . . . , k and

∑k
i=0 ai = 1. When ai = 1

for some i =1, . . . , k, it means that population �i is selected as the best �-qualified. When a0 =1,
it means that no population is considered as the best �-qualified. Let A = {a} denote the action
space. For our convenience, corresponding to � = (�1, . . . , �k), we define �′ = (�′

0, �
′
1, . . . , �

′
k)

as follows.

Definition 2.2. For i = 0, 1, . . . , k, define

�′
i =

{
�0 if i = 0 or �i > �0,

�i otherwise.

In a decision-theoretic approach, we consider the following loss function.

Definition 2.3. For parameter �, � (equivalently, �′, �), if action a is taken, a loss L(�, �; a) is
incurred and which is defined by

L(�, �; a) = L(�′, �; a)

= �

{
max(�′[k], �0) −

k∑
i=0

ai�
′
i

}
+ (1 − �)

k∑
i=0

ai

(
�i

�0
− 1

)

× I (�i > �0) (2.1)

for prefixed �(0���1), where �′[k] = max1� i �k �′
i and I (·) is the indicator function.

The constant � in the loss is determined by a decision maker which is used as a weight ratio of
the loss incurred due to failure of correct decision in terms of quantity � with respect to variance
control. It also can be viewed as an adjustment of a loss due to incorrect decision concerning the
quantity � against that of the quantity of variance. For further properties of loss L(�, �; a) defined
in (2.1), it is referred to Huang and Lai (1999).

This paper mainly focuses on selecting the best �-qualified normal population using empirical
Bayes approach. To make problem more clear, we consider some prior distribution on the mean,
but we permit no perturbation on the quantity of variance.

For each i = 1, . . . , k, let Xi1, . . . , XiMi
be a sample of size Mi from a normal population �i

with mean �i and variance �2
i . For convenience, we denote Xi =∑Mi

j=1 Xij /Mi . Let xij and xi

be the observed values of Xij and Xi , respectively. It is assumed that for each i = 1, . . . , k, �i

is a realization of random variable �i which has a normal prior distribution N(�i , 	
2
i ), where

−∞ < �i < ∞ and 	2
i > 0 both unknown. The random variables �1, . . . ,�k are assumed to
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be mutually independent. It is obvious that the conditional posterior distribution of �i given

Xi =xi is a normal distribution with mean E(�i | xi)= (xi	2
i + �2

i

Mi
�i )/(	

2
i +�2

i /Mi) and variance

Var(�i | xi) = (	2
i �

2
i )/(�

2
i + Mi	2

i ).
Let µ= (�1, . . . , �k), �= (	1, . . . , �k), X= (X1 . . . Xk), x= (x1, . . . , xk), and X be the sample

space generated by x. A selection rule d = (d0, d1, . . . , dk) is a mapping from the sample space
X to the set {0, 1} such that

∑k
i=0 di(x) = 1 for all x ∈ X. That is, d ∈ A.

Define


i (xi) = E(�i | xi) = E{g1(�
2
i )�i + g2(�

2
i ) | xi} = g1(�

2
i )

xi	2
i + �2

i

Mi
�i

	2
i + �2

i

Mi

+ g2(�
2
i )

and


′
i (xi) =

{
�0 if i = 0 or �2

i > �2
0,


i (xi) otherwise.

Analogous to arguments in Huang and Lai (1999), the Bayes risk of a selection rule d, denoted
by r(d), is given by

r(d) = �
∫
�

max(�′[k], �0)h(� |µ, �2) d� − �
∫
X

k∑
i=0

di(x)
′
i (xi)f (x) dx

+ (1 − �)

∫
X

k∑
i=0

di(x)

(
�i

�0
− 1

)
I (�i > �0)f (x) dx, (2.2)

where f (x) is the marginal probability density function of X, and h(� |µ, �2) is the conditional
probability density function of �. Note that, the first term in (2.2) is a constant.

For each x ∈ X, let

Q = {i |�2
i ��2

0} ∪ {0}, (2.3)

Q′(x) =
{
i |
′

i (xi) = max
0� j �k


′
j (xj ), i ∈ Q

}
(2.4)

and

i∗ ≡ i∗(x) =
{

0 if Q′(x) = {0},
min{i | i ∈ Q′(x), i �= 0} otherwise.

(2.5)

Analogous to arguments in Huang and Lai (1999), it can be derived that a Bayes selection rule
dB = (dB

0 , dB
1 , . . . , dB

k ) is given as follows:

dB
j (x) =

{
1 if j = i∗,

0 otherwise.
(2.6)
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Hence,

r(dB) = �
∫
�

max(�′[k], �0)h(� |µ, �2) d� − �
∫
X

k∑
i=0

dB
i (x)
′

i (xi)f (x) dx.

Note that, combining (2.3)–(2.6), if �2
i > �2

0 then the population �i is not selected.

3. The empirical Bayes selection rule

Since 
′
i (xi) involves the unknown parameters �2

i and (�i , 	
2
i ), i=1, . . . , k, hence, the proposed

Bayes selection rule dB defined by (2.6) is not applicable. However, based on the past data, these
unknown parameters can be estimated and a decision can be made if one more observation
(current data) is taken. Let Xijt denote a sample of size Mi from population �i with a normal
distribution N(�it , �2

i ) at time t (t = 1, . . . , ni), j = 1, . . . , Mi , and �it is a realization of a
random variable �it which is an independent copy of �i with a normal distribution N(�i , 	

2
i ),

t = 1, . . . , ni , i = 1, . . . , k. For convenience, we denote the current random sample Xijni+1 by
Xij for j = 1, . . . , Mi , i = 1, . . . , k.

For each �i , i = 1, . . . , k, we estimate the unknown parameters �i , 	
2
i , and �2

i based on the past

data Xijt , j = 1, . . . , Mi , t = 1, . . . , ni . Let Xi·t = 1/Mi

∑Mi

j=1 Xijt , Xi(ni) = 1/ni

∑ni

t=1 Xi·t ,
S2

i (ni) = 1/(ni − 1)
∑ni

t=1 (Xi·t − Xi(ni))
2, W 2

i·t = 1/(Mi − 1)
∑Mi

j=1 (Xijt − Xi·t )2, W 2
i (ni) =

1/ni

∑ni

t=1 W 2
i·t , and �2

i = 	2
i + �2

i /Mi . We denote �̂i , �̂2
i , �̂2

i , and 	̂2
i the estimators of �i , �2

i , �2
i ,

and 	2
i , respectively, and which are defined by

�̂i = Xi(ni), �̂2
i = W 2

i (ni), �̂2
i = S2

i (ni), and 	̂2
i = max

(
�̂2
i − �̂2

i

Mi

, 0

)
. (3.1)

These consistent estimators �̂i , �̂
2
i , �̂2

i , and 	̂2
i have been applied by several authors such as Ghosh

and Meeden (1986), Ghosh and Lahiri (1987), Gupta et al. (1994) and Huang and Lai (1999),
among others.

Also, let n = (n1, . . . , nk), we define

Qn = {i | �̂2
i ��2

0} ∪ {0} (3.2)

and


̂
′
i (xi) =

{
�0 if i = 0 or �̂2

i > �2
0,


̂i (xi) otherwise,
(3.3)

where


̂i (xi) = g1(�̂
2
i )

xi 	̂
2
i + �̂2

i

Mi
�̂i

�̂2
i

+ g2(�̂
2
i ), (3.4)

i = 1, . . . , k. Here we consider 
̂i (xi) and 
̂
′
i (xi) as estimates of 
i (xi) and 
′

i (xi) respectively.
For each x ∈ X, let

Q′
n(x) =

{
i | 
̂′

i (xi) = max
0� j �k


̂
′
j (xj ), i ∈ Qn

}
. (3.5)
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Again, define

i∗n ≡ i∗n(x) =
{

0 if Q′
n(x) = {0},

min{i | i ∈ Q′
n(x), i �= 0} otherwise.

(3.6)

Finally, we obtain an empirical Bayes selection rule d∗n = (d∗n
0 , d∗n

1 , . . . , d∗n
k ) as follows:

d∗n
j (x) =

{
1 if j = i∗n,

0 otherwise.
(3.7)

Hence,

r(d∗n) = �
∫
�

max(�′[k], �0)h(� |µ, �2) d� − �
∫
X

k∑
i=0

d∗n
i (x)
′

i (xi)f (x) dx

+ (1 − �)

∫
X

k∑
i=0

d∗n
i (x)

(
�i

�0
− 1

)
I (�i > �0)f (x) dx.

Combining (3.2)–(3.7), we note that if �̂2
i > �2

0, then the population �i is not selected.

4. Asymptotic optimality of empirical Bayes selection rule

In this section, we study the asymptotic optimality of the proposed empirical Bayes selection
rule. Consider an empirical Bayes selection rule dn = (dn

0 , dn
1 , . . . , dn

k ) and denote its associated
Bayes risk by r(dn). Obviously, r(dn) − r(dB)�0, since r(dB) is the minimum Bayes risk.
Thus, En{r(dn)} − r(dB)�0 for all n, where En is taken with respect to the probability measure
generated by Xijt , i = 1, . . . , k, j = 1, . . . , Mi , and t = 1, . . . , ni . The nonnegative regret risk
En{r(dn)} − r(dB) is generally used as a measure of the performance of the selection rule dn.

Definition 4.1. An empirical Bayes selection rule dn is said to be asymptotically optimal of order
�N if En{r(dn)}−r(dB)=O(�N), where N=min{ni | 1� i�k} and {�N } is a sequence of positive
numbers such that limN→∞ �N = 0.

Theorem 4.1. Assume �2
i �= �2

0, for all i = 1, . . . , k. Suppose both g1 and g2 are Lipschitz
continuous. Then, the empirical Bayes selection rule d∗n, defined by (3.7), is asymptotically
optimal of order O((ln N)2/N). That is, En{r(d∗n)} − r(dB) = O((ln N)2/N).

Proof. Let fi(xi) be the marginal probability density function of Xi and let Pn(�̂2
i > �2

0; �2
i < �2

0)

denote the quantity of Pn(�̂2
i > �2

0) under the condition that �2
i < �2

0. Then, we have

En{r(d∗n)} − r(dB)

= �
∫
X

k∑
i=0

{dB
i (x) − d∗n

i (x)}
′
i (xi)f (x) dx

+ (1 − �)

∫
X

k∑
i=0

d∗n
i (x)

(
�i

�0
− 1

)
I (�i > �0)f (x) dx
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��
k∑

i=1

∫
R

Pn(|
̂i (xi) − 
i (xi)| > |
i (xi) − �0|)|
i (xi) − �0|fi(xi) dxi

+ �
k∑

i=1

k∑
j=1

∫ ∫
R2

[Pn{|
̂i (xi) − 
i (xi)| > 1
2 |
i (xi) − 
j (xj )|}

+ Pn{|
̂j (xj ) − 
j (xj )| > 1
2 |
i (xi) − 
j (xj )|}]|
i (xi) − 
j (xj )|

× fi(xi)fj (xj ) dxi dxj

+ �
k∑

i=1

∫
R

Pn(�̂2
i > �2

0; �2
i < �2

0)|
i (xi) − �0|fi(xi) dxi

+ �
k∑

i=1

k∑
j=1

∫ ∫
R2

Pn(�̂2
i > �2

0; �2
i < �2

0)|
i (xi) − 
j (xj )|

× fi(xi)fj (xj ) dxi dxj

+ �
k∑

i=1

k∑
j=1

∫ ∫
R2

Pn(�̂2
j ��2

0; �2
j > �2

0)|
i (xi) − �0|fi(xi)fj (xj ) dxi dxj

+ �
k∑

i=1

k∑
j=1

∫ ∫
R2

Pn(�̂2
i > �2

0, �̂
2
j ��2

0; �2
i < �2

0, �
2
j > �2

0)

× |
i (xi) − �0|fi(xi)fj (xj ) dxi dxj

+ (1 − �)

k∑
i=1

Pn(�̂2
i ��2

0; �2
i > �2

0)

∣∣∣∣ �i

�0
− 1

∣∣∣∣
= �(I1 + I2 + I3 + I4 + I5 + I6) + (1 − �)I7, say. (4.1)

Let


i (xi) = E(�i | xi) = xi	2
i + �2

i

Mi
�i

	2
i + �2

i

Mi

= xi	2
i + �2

i

Mi
�i

�2
i

and


̂i (xi) = xi 	̂
2
i + �̂2

i

Mi
�̂i

�̂2
i

,

then 
i (xi) = g1(�2
i )
i (xi) + g2(�2

i ) and 
̂i (xi) = g1(�̂
2
i )
̂i (xi) + g2(�̂

2
i ). Using the inequality

that

|g1(�̂
2
i )
̂i (xi) − g1(�

2
i )
i (xi)|

= |g1(�̂
2
i )(
̂i (xi) − 
i (xi)) + (g1(�̂

2
i ) − g1(�

2
i ))
i (xi)|

� |g1(�̂
2
i )||(
̂i (xi) − 
i (xi)| + |(g1(�̂

2
i ) − g1(�

2
i )||
i (xi)|.
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Rewrite I1 as

I1 =
k∑

i=1

∫
R

Pn{|
̂i (xi) − 
i (xi)| > |
i (xi) − �0|}|
i (xi) − �0|fi(xi) dxi

�
k∑

i=1

∫
R

Pn{|g1(�̂
2
i )||
̂i (xi) − 
i (xi)| > |
i (xi) − �0|/3}|
i (xi) − �0|fi(xi) dxi

+
k∑

i=1

∫
R

Pn{|g1(�̂
2
i ) − g1(�

2
i )||
i (xi)| > |
i (xi) − �0|/3}|
i (xi) − �0|

× fi(xi) dxi

+
k∑

i=1

∫
R

Pn{|g2(�̂
2
i ) − g2(�

2
i )| > |
i (xi) − �0|/3}|
i (xi) − �0|

× fi(xi) dxi

= I11 + I12 + I13, say.

Now,

I11 �
k∑

i=1

∫
R

Pn{|g1(�̂
2
i )||
̂i (xi) − 
i (xi)| > |
i (xi) − �0|/3, �2

i /2� �̂2
i �2�2

i }

× |
i (xi) − �0|fi(xi) dxi

+
k∑

i=1

∫
R

Pn{|g1(�̂
2
i )||
̂i (xi) − 
i (xi)| > |
i (xi) − �0|/3,

�̂2
i < �i/2 or �̂2

i > 2�2
i }|
i (xi) − �0|fi(xi) dxi

= I111 + I112, say.

Using Corollary 4.1 of Gupta et al. (1994), we have

I112 = O(exp(−cN))

for some c > 0. Since g1 is Lipschitz continuous, we have

I111 �
k∑

i=1

∫
R

Pn{|
̂i (xi) − 
i (xi)| > |
i (xi) − �0|/(3c1i ), �
2
i /2� �̂2

i �2�2
i }

× |
i (xi) − �0|fi(xi) dxi ,

where c1i = sup�2
i /2��2 �2�2

i
|g1(�2)| and 0 < c1i < ∞. Then, following a discussion analogous

to Gupta et al. (1994), one can obtain that I111 �O((ln N)2/N). Therefore,

I11 �O((ln N)2/N).
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Also, using the Lipschitz condition, it can be shown that I12 and I13 all converge to 0 with rate of
order O((ln N)2/N). Thus,

I1 �O((ln N)2/N). (4.2)

By using similar arguments and the results in Gupta et al. (1994), we also have

I2 �O((ln N)2/N). (4.3)

Now, we evaluate the rate of convergence of I3, I4, I5, I6, and I7. Huang and Lai (1999) have
proved that

Pn(�̂2
i ��2

0; �2
i > �2

0) = O(exp(−c2ni)) (4.4)

and

Pn(�̂2
i > �2

0; �2
i < �2

0) = O(exp(−c2ni)), (4.5)

where c2 = max1� i �k(Mi − 1)/2|(�2
0 − �2

i )/�
2
i − ln(�2

0/�
2
i )| > 0 for i = 1, . . . , k.

Recall that 
i (xi) = g1(�2
i )(xi	2

i + (�2
i /Mi)�i )/�

2
i + g2(�2

i ) and Xi is marginally N(�i , �
2
i )

distributed. Therefore, 
i (Xi) follows N(g1(�2
i )�i + g2(�2

i ), g
2
1(�2

i )	
4
i /�

2
i ). Hence,∫

R

|
i (xi) − �0|fi(xi) dxi

�
∫

R

|g1(�
2
i )(
(xi) − �i )|fi(xi) dxi +

∫
R

|g1(�
2
i )�i + g2(�

2
i ) − �0|fi(xi) dxi

= |g1(�
2
i )|

2	2
i√

2��i

+ |g1(�
2
i )�i + g2(�

2
i ) − �0| < ∞. (4.6)

Also, Xi and Xj are mutually independent for all i �= j . Similarly as in case of (4.8), we conclude
that ∫ ∫

R2
|
i (xi) − 
j (xj )|fi(xi)fj (xj ) dxi dxj < ∞. (4.7)

Noting that |�2
i − �2

0| is finite and combining (4.4)–(4.7), it is easy to see that I3, I4, I5, I6, and
I7, all converge to 0 with rate of order 1/N . Finally, by combining (4.1), (4.2), and (4.3), we
complete the proof. �

5. Examples

In following examples, we consider some special functions of g1 and g2. For �i associated
with such g1 and g2, the empirical Bayes selection rule is asymptotically optimal of order
O((ln N)2)/N).

Example 5.1. Take g1(�2
i ) = 1 and g2(�2

i ) = �−1(p)�i , then �i = g1(�2
i )�i + g2(�2

i ) = �i +
�−1(p)�i is the pth quantile. It is obvious that both g1 and g2 are Lipschitz continuous.
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Example 5.2. If we have a prior information that there exists a positive small real number �∗
such that �i > �∗ for all i. Take g1(�2

i )=1/�i and g2(�2
i )=0, then �i =g1(�2

i )�i +g2(�2
i )=�i/�i

is the signal-to-noise ratio (or standardized mean). Again, it is obvious that both g1 and g2 are
Lipschitz continuous.

Example 5.3. LetX01, . . . , X0Mi
be an independent random sample of size Mi from a control

normal population �0 with known mean �0 and variance �2
0. The reliability parameter can be

defined by P(Xij > X0j ) = �((�i − �0)(�2
i + �2

0)
−1/2) for i �= 0. If g1(�2

i ) = (�2
i + �2

0)
−1/2 and

g2(�2
i ) = −�0(�2

i + �2
0)

−1/2, then �i = g1(�2
i )�i + g2(�2

i ) = (�i − �0)(�2
i + �2

0)
−1/2 and �(�i )

is the reliability parameter. Since �(·) is strictly increasing, the parameter for selection criterion
can be defined by �i . Here both g1 and g2 are Lipschitz continuous.

Example 5.4. Suppose that Yij =exp(Xij ), where Xij are independently distributed asN(�i , �2
i )

(j = 1, . . . , Mi, i = 1, . . . , k). Then Yij has a lognormal distribution with mean exp(�i + �2
i /2)

and coefficient of variation CV = {exp(�2
i ) − 1}1/2. If g1(�2

i ) = 1 and g2(�2
i ) = �2

i /2, then
�i =g1(�2

i )�i +g2(�2
i )=�i +�2

i /2 and exp(�i ) is equal to the mean of Yij . Since exp(·) is strictly
increasing, the parameter for selection criterion can be defined by �i . It is obvious that both g1
and g2 are Lipschitz continuous. That is, Yij are independent random samples having lognormal
distributions. For given control values ϑ0 and CV0, we want to select some population whose
associated mean is larger than ϑ0 and whose associated coefficient of variation is less than or
equal to CV0. If we define �0 = ln(ϑ0) and �2

0 = ln(CV2
0 + 1), then the problem is just equivalent

to selecting some population whose associated �i is larger than �0 and whose associated �2
i is less

than or equal to �2
0.

6. Simulation study

In order to investigate the performance of proposed empirical Bayes selection rule d∗n defined
in Section 3, we have carried out a simulation study and which is summarized in this section. The
quality En{r(d∗n)} − r(dB), mentioned in Definition 4.1, is used as a measure of performance
of the empirical Bayes selection rule d∗n. For a given current observations x and given past
observation xijt , let

Dn(x) = �
k∑

i=0

{dB
i (x) − d∗n

i (x)}
′
i (x) + (1 − �)

k∑
i=0

d∗n
i (x)

(
�i

�0
− 1

)
I (�i > �0)

= �{
′
i∗(x) − 
′

i∗n (x)} + (1 − �)

(
�i∗n
�0

− 1

)
I (�i∗n > �0).

Then,

En{r(d∗n)} − r(dB) = E[En{Dn(X)}].

Therefore, the sample mean of Dn(x) based on the observations x and xijt , i = 1, . . . , k,

j = 1, . . . , Mi , t = 1, . . . , ni , can be used as an estimator of En{r(d∗n)} − r(dB).
The simulation scheme is similar to that of Gupta et al. (1994) and Huang and Lai (1999). We

briefly explain the scheme as follows:
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Table 1
Behavior of empirical Bayes selection rules when �(1)

i
= �i + �−1(0.9)�i

n fn D̄n nD̄n SE(D̄n)

20 0.8493 1.3396 × 10−2 2.6792 × 10−1 5.3299 × 10−4

40 0.9228 4.7644 × 10−3 1.9058 × 10−1 2.7052 × 10−4

60 0.9553 2.4116 × 10−3 1.4469 × 10−1 1.8885 × 10−4

80 0.9645 1.4147 × 10−3 1.1317 × 10−1 1.1664 × 10−4

100 0.9764 8.6692 × 10−4 8.6692 × 10−2 1.0258 × 10−4

200 0.9873 1.9440 × 10−4 3.8879 × 10−2 2.3420 × 10−5

300 0.9901 1.0970 × 10−4 3.2909 × 10−2 1.4088 × 10−5

400 0.9901 9.8765 × 10−5 3.9506 × 10−2 1.3060 × 10−5

500 0.9922 8.2909 × 10−5 4.1455 × 10−2 1.2275 × 10−5

600 0.9928 6.4165 × 10−5 3.8499 × 10−2 1.0051 × 10−5

700 0.9925 6.5966 × 10−5 4.6176 × 10−2 9.4488 × 10−6

800 0.9921 5.3319 × 10−5 4.2655 × 10−2 7.7244 × 10−6

900 0.9925 4.7624 × 10−5 4.2862 × 10−2 7.2539 × 10−6

1000 0.9944 4.4789 × 10−5 4.4789 × 10−2 8.0138 × 10−6

(1) For each t = 1, . . . , ni and for each population �i , i = 1, . . . , k, generate observations
xi1t , . . . , XiMi t by the following way:

a. Take a value �it according to distribution N(�i , 	
2
i ).

b. For given �it and �2
i , generate random samples xi1t , . . . , xiMi t according to distribution

N(�it , �2
i ).

(2) Based on the samples xijt , i = 1, . . . , k, j = 1, . . . , Mi , t = 1, . . . , ni , estimate the unknown
parameters �i , �2

i , 	2
i according to (3.1) and they are denoted by �̂i , �̂2

i , 	̂2
i , respectively.

(3) For population �i , i = 1, . . . , k, repeat step (1) with t = ni + 1 and take its sample mean as
our current sample xi . Thus the current sample vector is given by x = (x1, . . . , xk).

(4) For given value of � and control values �2
0 and �0, based on the current sample vector, determine

the Bayes selection rule dB and the empirical Bayes selection rule d∗n according (2.6) and
(3.7). Then, compute Dn(x).

(5) Repeat step (1) through step (4) 10 000 times, and then take its average denoted by D̄n which
is used as an estimate of En{r(d∗n)} − r(dB). In addition, SE(D̄n),the estimated standard
error and ND̄n are also computed.

Simulation results are summarized in Tables 1–4 in which the parameters of selection criterion
are respectively given by �(1)

i = �i + �−1(0.9)�i , �(2)
i = �i/�i , �(3)

i = (�i − �0)(�2
i + �2

0)
−1/2,

and �(4)
i = �i + �2

i /2, which have been considered in Section 5. In Tables 1–4, we take k = 4,
Mi = M = 5, ni = n (i.e. N = n), �i = �2

i = i, 	2
i = 1, i = 1, . . . , 4, � = 0.5, �0 = �2

0 = 2.5,
and �0 = g1(�2

0)�0 + g2(�2
0). The relative frequency that the population selected according to

the proposed empirical Bayes selection rule coincides with that selected by the Bayes selection
rule is computed and denoted by fn. It can be seen from Tables 1–4 that values of D̄n decrease
quite rapidly as n increases. The performance of the proposed empirical Bayes selection rules
behave satisfactorily when n�40. Also, the value of nD̄n oscillates locally while it decreases
globally as n increases. This supports Theorem 4.1 that the rate of convergence is at least of order
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Table 2
Behavior of empirical Bayes selection rules when �(2)

i
= �i /�i

n fn D̄n nD̄n SE(D̄n)

20 0.8041 2.0550 × 10−2 4.1101 × 10−1 6.6991 × 10−4

40 0.8905 7.7007 × 10−3 3.0803 × 10−1 3.5467 × 10−4

60 0.9260 4.0101 × 10−3 2.4061 × 10−1 2.5312 × 10−4

80 0.9401 2.3060 × 10−3 1.8448 × 10−1 1.4981 × 10−4

100 0.9505 1.4891 × 10−3 1.4891 × 10−1 1.0143 × 10−4

200 0.9668 5.9964 × 10−4 1.1993 × 10−1 4.3995 × 10−5

300 0.9712 4.2832 × 10−4 1.2850 × 10−1 3.5850 × 10−5

400 0.9807 2.3013 × 10−4 9.2052 × 10−2 2.2665 × 10−5

500 0.9789 2.4893 × 10−4 1.2446 × 10−1 2.4819 × 10−5

600 0.9815 1.9500 × 10−4 1.1700 × 10−1 2.1062 × 10−5

700 0.9805 1.5893 × 10−4 1.1125 × 10−1 1.5587 × 10−5

800 0.9867 1.0963 × 10−4 8.7707 × 10−2 1.3204 × 10−5

900 0.9844 1.1864 × 10−4 1.0677 × 10−1 1.2894 × 10−5

1000 0.9858 1.1367 × 10−4 1.1367 × 10−1 1.3306 × 10−5

Table 3
Behavior of empirical Bayes selection rules when �(3)

i
= (�i − �0)(�2

i
+ �2

0)−1/2

n fn D̄n nD̄n SE(D̄n)

20 0.7864 2.4795 × 10−2 4.9591 × 10−1 6.9934 × 10−4

40 0.8723 9.6728 × 10−3 3.8691 × 10−1 3.9064 × 10−4

60 0.8993 5.9760 × 10−3 3.5856 × 10−1 2.8090 × 10−4

80 0.9224 3.4700 × 10−3 2.7760 × 10−1 1.8737 × 10−4

100 0.9278 2.9127 × 10−3 2.9127 × 10−1 1.6209 × 10−4

200 0.9515 1.1360 × 10−3 2.2720 × 10−1 6.9261 × 10−5

300 0.9637 7.5687 × 10−4 2.2706 × 10−1 5.1834 × 10−5

400 0.9675 5.4517 × 10−4 2.1807 × 10−1 4.0938 × 10−5

500 0.9685 4.4958 × 10−4 2.2479 × 10−1 3.4530 × 10−5

600 0.9696 3.8113 × 10−4 2.2868 × 10−1 2.8698 × 10−5

700 0.9731 3.0783 × 10−4 2.1548 × 10−1 2.5120 × 10−5

800 0.9751 2.8380 × 10−4 2.2704 × 10−1 2.3748 × 10−5

900 0.9765 2.5210 × 10−4 2.2689 × 10−1 2.1380 × 10−5

1000 0.9761 2.3985 × 10−4 2.3985 × 10−1 2.0894 × 10−5

O((ln N)2/N). These results may also indicate that the best obtainable rate of convergence is
of order O(1/N). We also consider a quantity fn/(nD̄n) which combines both correct selection
frequency and difference of the empirical Bayes risk from the Bayes risk. The larger the value
of fn/(nD̄n), the higher the efficiency of the empirical Bayes rule. Finally, in Figs. 1–3, we
respectively draw the quantities of fn, D̄n/SE(D̄n) and fn/(nD̄n) with respect to n for each case
of �(1)

i , �(2)
i , �(3)

i , and �(4)
i with equal Mi = 5 and equal ni .
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Table 4
Behavior of empirical Bayes selection rules when �(4)

i
= �i + �2

i
/2

n fn D̄n nD̄n SE(D̄n)

20 0.8495 1.2978 × 10−2 2.5957 × 10−1 5.1314 × 10−4

40 0.9242 4.6423 × 10−3 1.8570 × 10−1 2.6054 × 10−4

60 0.9525 2.5035 × 10−3 1.5021 × 10−1 1.8546 × 10−4

80 0.9667 1.3497 × 10−3 1.0798 × 10−1 1.1241 × 10−4

100 0.9753 8.8269 × 10−4 8.8269 × 10−2 1.0002 × 10−4

200 0.9878 2.2617 × 10−4 4.5235 × 10−2 2.5858 × 10−5

300 0.9893 1.2700 × 10−4 3.8100 × 10−2 1.7801 × 10−5

400 0.9892 1.2399 × 10−4 4.9595 × 10−2 1.5311 × 10−5

500 0.9910 9.1090 × 10−5 4.5545 × 10−2 1.2259 × 10−5

600 0.9914 1.0104 × 10−4 6.0624 × 10−2 1.3772 × 10−5

700 0.9932 6.9747 × 10−5 4.8823 × 10−2 1.0832 × 10−5

800 0.9931 6.0182 × 10−5 4.8146 × 10−2 9.3833 × 10−6

900 0.9920 6.2221 × 10−5 5.6000 × 10−2 8.7588 × 10−6

1000 0.9939 4.4816 × 10−6 4.4816 × 10−2 7.3154 × 10−6
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Fig. 1. Plots of fn with respect to n.

7. Conclusions and discussion

Most literature in decision theory focus only on single criterion. In this paper we consider a
selection problem with three criteria in which both a parameter of interest and the dispersion
parameter are involved. An empirical Bayes selection rule is proposed and which has been shown
to be asymptotically optimal with convergence rate of order O((ln N)2/N). A simulation study
has been carried out and it shows that the performance of the proposed empirical Bayes selection
rule is rather acceptable.

Furthermore, for given control values �0, �0, and �2
0, we are interested in selecting some

population whose parameter of interest �i is the largest in the qualified subset in which each
parameter of interest is larger than �0 and whose mean and variance should be no smaller than
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Fig. 2. Plots of D̄n/SE(D̄n) with respect to n.
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Fig. 3. Plots of fn/(nD̄n) with respect to n.

�0 and no larger than �2
0, respectively. This is a selection problem with four criteria in which

parameter of interest �i , location parameter �i , and dispersion parameter �2
i are all involved.

Under same formulation, the loss function can be defined by

L(�, �, �; a) = L(�′, �, �; a)

= �1

{
max(�′[k], �0) −

k∑
i=0

ai�
′
i

}
+ �2

k∑
i=0

ai(�0 − �i )I (�i < �0)

+ (1 − �1 − �2)

k∑
i=0

ai

(
�i

�0
− 1

)
I (�i > �0)

for prefixed �1 and �2 such that �1, �2 �0, �1 + �2 �1, where

�′
i =

{
�0 if i = 0 or �i < �0 or �i > �0,

�i otherwise
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and �′[k] = max1� i �k �′
i . The Bayes selection rule and the empirical Bayes selection rule can be

obtained by using a similar approach in this paper. However, the corresponding convergence rate
of the empirical Bayes selection rule may not be obtained analogously.

On the other hand, it is worthwhile to consider a general location-scale model. More study is
needed for this model since it covers a large family and important in practical applications.
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